metabelian, supersoluble, monomial
Aliases: C33⋊9Q16, C32⋊6Dic12, C12.35S32, (C3×C6).46D12, (C3×C12).126D6, C32⋊4C8.3S3, (C32×C6).49D4, C6.9(D6⋊S3), C32⋊4Q8.5S3, C3⋊3(C32⋊3Q16), C3⋊1(C32⋊2Q16), C32⋊7(C3⋊Q16), C2.5(C33⋊9D4), C6.39(C3⋊D12), C4.3(C32⋊4D6), (C32×C12).22C22, (C3×C6).67(C3⋊D4), (C3×C32⋊4C8).3C2, (C3×C32⋊4Q8).4C2, SmallGroup(432,459)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C33⋊9Q16
G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, ad=da, eae-1=a-1, bc=cb, dbd-1=ebe-1=b-1, dcd-1=c-1, ce=ec, ede-1=d-1 >
Subgroups: 456 in 110 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C3, C3, C3, C4, C4, C6, C6, C6, C8, Q8, C32, C32, C32, Dic3, C12, C12, C12, Q16, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, Dic12, C3⋊Q16, C32×C6, C3×C3⋊C8, C32⋊4C8, C3×Dic6, C32⋊4Q8, C3×C3⋊Dic3, C32×C12, C32⋊2Q16, C32⋊3Q16, C3×C32⋊4C8, C3×C32⋊4Q8, C33⋊9Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, D12, C3⋊D4, S32, Dic12, C3⋊Q16, D6⋊S3, C3⋊D12, C32⋊4D6, C32⋊2Q16, C32⋊3Q16, C33⋊9D4, C33⋊9Q16
(1 35 46)(2 36 47)(3 37 48)(4 38 41)(5 39 42)(6 40 43)(7 33 44)(8 34 45)(9 19 30)(10 20 31)(11 21 32)(12 22 25)(13 23 26)(14 24 27)(15 17 28)(16 18 29)
(1 35 46)(2 47 36)(3 37 48)(4 41 38)(5 39 42)(6 43 40)(7 33 44)(8 45 34)(9 19 30)(10 31 20)(11 21 32)(12 25 22)(13 23 26)(14 27 24)(15 17 28)(16 29 18)
(1 46 35)(2 36 47)(3 48 37)(4 38 41)(5 42 39)(6 40 43)(7 44 33)(8 34 45)(9 19 30)(10 31 20)(11 21 32)(12 25 22)(13 23 26)(14 27 24)(15 17 28)(16 29 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 35 13 39)(10 34 14 38)(11 33 15 37)(12 40 16 36)(25 43 29 47)(26 42 30 46)(27 41 31 45)(28 48 32 44)
G:=sub<Sym(48)| (1,35,46)(2,36,47)(3,37,48)(4,38,41)(5,39,42)(6,40,43)(7,33,44)(8,34,45)(9,19,30)(10,20,31)(11,21,32)(12,22,25)(13,23,26)(14,24,27)(15,17,28)(16,18,29), (1,35,46)(2,47,36)(3,37,48)(4,41,38)(5,39,42)(6,43,40)(7,33,44)(8,45,34)(9,19,30)(10,31,20)(11,21,32)(12,25,22)(13,23,26)(14,27,24)(15,17,28)(16,29,18), (1,46,35)(2,36,47)(3,48,37)(4,38,41)(5,42,39)(6,40,43)(7,44,33)(8,34,45)(9,19,30)(10,31,20)(11,21,32)(12,25,22)(13,23,26)(14,27,24)(15,17,28)(16,29,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(25,43,29,47)(26,42,30,46)(27,41,31,45)(28,48,32,44)>;
G:=Group( (1,35,46)(2,36,47)(3,37,48)(4,38,41)(5,39,42)(6,40,43)(7,33,44)(8,34,45)(9,19,30)(10,20,31)(11,21,32)(12,22,25)(13,23,26)(14,24,27)(15,17,28)(16,18,29), (1,35,46)(2,47,36)(3,37,48)(4,41,38)(5,39,42)(6,43,40)(7,33,44)(8,45,34)(9,19,30)(10,31,20)(11,21,32)(12,25,22)(13,23,26)(14,27,24)(15,17,28)(16,29,18), (1,46,35)(2,36,47)(3,48,37)(4,38,41)(5,42,39)(6,40,43)(7,44,33)(8,34,45)(9,19,30)(10,31,20)(11,21,32)(12,25,22)(13,23,26)(14,27,24)(15,17,28)(16,29,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(25,43,29,47)(26,42,30,46)(27,41,31,45)(28,48,32,44) );
G=PermutationGroup([[(1,35,46),(2,36,47),(3,37,48),(4,38,41),(5,39,42),(6,40,43),(7,33,44),(8,34,45),(9,19,30),(10,20,31),(11,21,32),(12,22,25),(13,23,26),(14,24,27),(15,17,28),(16,18,29)], [(1,35,46),(2,47,36),(3,37,48),(4,41,38),(5,39,42),(6,43,40),(7,33,44),(8,45,34),(9,19,30),(10,31,20),(11,21,32),(12,25,22),(13,23,26),(14,27,24),(15,17,28),(16,29,18)], [(1,46,35),(2,36,47),(3,48,37),(4,38,41),(5,42,39),(6,40,43),(7,44,33),(8,34,45),(9,19,30),(10,31,20),(11,21,32),(12,25,22),(13,23,26),(14,27,24),(15,17,28),(16,29,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,35,13,39),(10,34,14,38),(11,33,15,37),(12,40,16,36),(25,43,29,47),(26,42,30,46),(27,41,31,45),(28,48,32,44)]])
45 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | ··· | 3H | 4A | 4B | 4C | 6A | 6B | 6C | 6D | ··· | 6H | 8A | 8B | 12A | 12B | 12C | ··· | 12N | 12O | 12P | 12Q | 12R | 24A | 24B | 24C | 24D |
order | 1 | 2 | 3 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 36 | 36 | 2 | 2 | 2 | 4 | ··· | 4 | 18 | 18 | 2 | 2 | 4 | ··· | 4 | 36 | 36 | 36 | 36 | 18 | 18 | 18 | 18 |
45 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | - | + | - | - | + | - | |||||
image | C1 | C2 | C2 | S3 | S3 | D4 | D6 | Q16 | D12 | C3⋊D4 | Dic12 | S32 | C3⋊Q16 | D6⋊S3 | C3⋊D12 | C32⋊4D6 | C32⋊2Q16 | C32⋊3Q16 | C33⋊9D4 | C33⋊9Q16 |
kernel | C33⋊9Q16 | C3×C32⋊4C8 | C3×C32⋊4Q8 | C32⋊4C8 | C32⋊4Q8 | C32×C6 | C3×C12 | C33 | C3×C6 | C3×C6 | C32 | C12 | C32 | C6 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 4 | 4 | 3 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 4 |
Matrix representation of C33⋊9Q16 ►in GL8(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 72 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
10 | 59 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 61 | 63 | 0 | 0 |
0 | 0 | 0 | 0 | 51 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 19 | 59 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 54 |
4 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 69 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 43 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 22 | 10 |
0 | 0 | 0 | 0 | 0 | 0 | 32 | 51 |
G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[10,0,0,0,0,0,0,0,59,22,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,61,51,0,0,0,0,0,0,63,12,0,0,0,0,0,0,0,0,19,5,0,0,0,0,0,0,59,54],[4,7,0,0,0,0,0,0,8,69,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,43,13,0,0,0,0,0,0,60,30,0,0,0,0,0,0,0,0,22,32,0,0,0,0,0,0,10,51] >;
C33⋊9Q16 in GAP, Magma, Sage, TeX
C_3^3\rtimes_9Q_{16}
% in TeX
G:=Group("C3^3:9Q16");
// GroupNames label
G:=SmallGroup(432,459);
// by ID
G=gap.SmallGroup(432,459);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,64,254,135,58,1124,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations